MESOPOROUS MATERIALS FOR DRUG DELIVERY

A Quantum-Mechanical Simulation

Massimo Delle Piane

Dipartimento di Chimica

Università di Torino

massimo.dellepiane@unito.it

MESOPOROUS SILICA MATERIALS

FIRST SYNTHESIZED IN 1990s BY MOBIL OIL Corp.

- > Ordered arrangement of homogeneous pores
- Pores: mesoporous size (2-10 nm)
- > High surface area: up to $1000 \text{ m}^2\text{g}^{-1}$

- 						
United States Patent [19] Kresge et al.			[11] [45]	Patent Number:	5,098,684	
				Date of Patent:	Mar. 24, 1992	
[54]	SYNTHET MATERIA	IC MESOPOROUS CRYSTALINE L	4,880,611 11/1989 von Ballmoos et al 423/306 OTHER PUBLICATIONS			
[75]	Inventors:	Charles T. Kresge, West Chester, Pa.; Michael E. Leonowicz, Medford Lakes; Wieslaw J. Roth, Sewell, both of N.J.; James C. Vartuli, West Chester, Pa.	Eugster, Magadi, vol. 157 Szostak, Characte	Eugster, H. P. "Hydrous Sodium Silicates from Lake Magadi, Kenya Precursors of Bedded Chert" Science vol. 157 (1967) pp. 1177-1180. Szostak, R. et al., "Ultralarge Pore Molecular Sieves: Characterization of the 14 Angstroms Pore Mineral, Cacoxenie", Zeolites: Facts, Figures and Future, El-		
[73]	Assignee:	Mobil Oil Corp., Fairfax, Va.	Cacoxen			

APPLICATIONS

Separation - Catalysis – Sensors – **Drug Delivery**

MESOPOROUS SILICA MATERIALS FOR DRUG DELIVERY

DRUG DELIVERY SYSTEM

Pharmaceutical formulation that can control the dissolution rate of the active principle in the body and/or target specific organs.

QUANTUM-MECHANICAL SIMULATIONS

STATIC CALCULATIONS

MPPCRYSTAL

(massively parallel version for High Performance Computing)

SuperMUC, LRZ (Munich, DE)

PRACE project 2012-2013

Theoretical Chemistry Group (University of Turin)

www.crystalsolutions.eu

Periodic DFT calculations

Functional: **B3LYP**

Gaussian Basis Set: VTZ(d)

with (B3LYP-D*) and without the Grimme long-range **dispersion** (Grimme, 2001 / Civalleri et al., 2008)

www.cp2k.org

www.vasp.at

PBE functional Grimme D2 correction for **dispersion NVT** – 300K

Mesoporous Materials For Drug Delivery - Massimo Delle Piane – Torino, 29/11/2013

MOLECULAR DYNAMICS

OBJECTIVES

Experimental results

Molecular Modeling

- Help interpretation of experiments
- Provide atomistic details of the interaction
- Give the energetics of the system \succ

Few details at molecular level

Delle Piane, M. et al. J Chem Theory Comput 2013, 9 (5), 2404-2415

MCM-41: A REALISTIC MODEL

INSIDE THE PORES OF MCM-41

IBUPROFEN IN THE PORE – SINGLE LOADING

B3LYP-D*

IBUPROFEN IN THE PORE – HIGHEST LOADING

B3LYP

B3LYP-D*

IBUPROFEN IN THE PORE: INTERACTION FEATURES

MCM-41/IBUPROFEN: INTERACTION ENERGIES

Weak dependence on the adsorption site

Dramatic role of dispersion interactions

MCM-41/IBUPROFEN: SPECTROSCOPIC FEATURES

Ibuprofen C=O stretching band: a sensitive probe

Calculated bathochromic shift: 15 cm⁻¹

Observed bathochromic shift: 11 cm⁻¹

Clear indication that the observed broadness of the experimental ibuprofen C=O band may be due to slightly different adsorption situations.

MCM-41/IBUPROFEN: SPECTROSCOPIC FEATURES

Only ibuprofen protons directly interacting with MCM, *i.e.* the carboxyl proton, are strongly affected by the environment.

MCM-41/Ibuprofen - AIMD

Ab initio molecular dynamics simulation of the "high loading" structure NVT @ room temperature (300 K) PBE-D2 Production: 6 ps (...and more)

High mobility of IBU apolar part Dynamics of the H-bonds

Impending aggregation of drug molecules through non specific vdW interactions

MCM-41/Ibuprofen - AIMD

DYNAMICS OF THE H-BONDS BETWEEN IBUPROFEN AND MCM-41

WHAT NEXT?

IBUPROFEN DIMERS ADSORPTION

EFFECT OF WATER ON THE DRUG-SILICA INTERACTION

(already studied for ibuprofen adsorbed on an hydrophobic silica surface)

ACKNOWLEDGEMENTS

P. Ugliengo

M. Corno

Laboratory of Computational Chemistry and Molecular Graphic (UNITO)

R. Dovesi

B. Civalleri

R. Orlando

Theoretical Chemistry Group (UNITO)

A. Pedone

UNIMORE

