Amorphous Silica-Water, Boehmite AlOOH Interface studied by DFT-MD and adsorption of biomolecules

> D. Costa Institut de Recherches de Chimie de Paris, ENSCP Chimie-ParisTech, Paris, France

First Principles Calculations

« structural, dynamics and electronics understanding »

- Bond breaking and making
- Reproduces surface properties (relaxation, structure, acidbase character..)
- Calculation of Spectroscopic Properties

Adsorption of small biomolecules

- Electrostatic does not explain everything
- interpretations of spectroscopic data require more insight on the local interactions

Role of specific surface sites in presence of water

In the recent three years Born Openheimer Molecular Dynamics is developing for surfaces-water interactions

J. Rosenquist et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 220 (2003) 91-104

B. Kasprzyk-Hordern / Advances in Colloid and Interface Science 110 (2004) 19-48

4

Hydroxylation of boehmite at the aqueous interface & organisation of interfacial water molecules

a)

Motta, Gaigeot, Costa JPCC 2012 116:12514

Protonic Conductivity@steps

a)

μ1-HOH + μ2-OH ← μ1-OH + μ2-HOH ΔpK(μ1-OH) = 1.4

MUSIC predicts 2-3 units pK difference (Jolivet et al 2004)

Boehmite Toxicity ?

Boehmite used as vaccine adjuvant induces Macrophagic myofasciitis lesions (Gherardi 1998)

X. Lopez (Espagne), C. Exley (UK)

Al³⁺ acts as a pro-oxidant Stabilisation of Reactive oxygen Species

O₂°-@boehmite and OOH°@boehmite

-0.7 eV more stable

OOH° four times more oxidant than O2°-Active in Oxidative Stress

Ribeiro et al, J Inorganic Biochemistry, 128C, 164-173, 2013

DFT-MD of boehmite/water interface and the adsorption of glycine

Energetically most favorable adsorption mode of Glycine at the aqueous boehmite/water interface?

(Motta, Gaigeot, Costa, JPCC 2012 116:23418)

Outer Sphere

Outer Sphere Adsorption Gly-Boehmite

 $< \Delta E^{KS} > = -20.5 \text{ kJ/mol}$ wrt to Gly immersed in bulk water

Inner Sphere

Several condensation reactions of Glycine COO⁻ termini with the different Al surface sites

 $< \Delta E^{KS} > = -113.6 \text{ kJ/mol}$

The most stable conformation is found when the surface charge is maintained: an anion substitutes an OH group a neutral group substitutes a HOH

Summary

For a small molecule on a simple surface, several adsorption configurations have to be considered and adsorption energies are not simply predictible

=> A high level of theory is required

Inner adsorption is much more stable than Outer sphere adsorption @step and @terrace

At step, an adsorbed molecule might be oxidized by OOH°

Amorphous Silica: A representative ab initio Model

F. Tielens, C. Gervais, F. Mauri, J-F Lambert, D Costa Chem Mat., 20, 3336 (2008)

SiOH 5.8/nm²

experimental estimates on a hydroxylated surface (4-5 OH/nm²).

On the top surface, 23% silanols are geminal ones, in good agreement with experimental values.

35% of the silanols are involved in H bonds.

Rimola et al., 113, 4216, 2013

Combined NMR Experiments and DFT-D

DFT-D calculations to help in interpretating experimental NMR data.

glycine on isolated, vicinal, geminal silanols.

Calculated NMR shifts => vicinal silanols, with water coadsorbed.

Strentgth of Adsorption @ isolated < vicinal < geminal nest

Water co-adsorption is favored.

Silanols on Quartz (0001)

OH orientation in vacuum

OH orientation in water

Silanols on amorphous Silica

OH orientation in vacuum

OH orientation in water

Interfacial Water layer @amorphous silica

@Quartz

Gaigeot M-P. et al, J. Phys. Cond Matter 24, 124106 2012

Musso et al. Phys Chem Chem Phys 14 10507, 2012

No structured interfacial water layers

Isolated vs Geminal Silanols @amorphous silica

Ring formed during > 50% of the trajectory or more

Ring Opening \rightarrow Adsorption

Summary

- Amorphous Silica exhibits a picture dramatically different from 0001 quartz
- In average water is not organized @amorphous silica
- Appearance of a local organisation in a global disorder
- Water Cycles are formed at geminals, which may allow insertion of an adsorbate

THANKS TO

A. MOTTA, Catania **M-P GAIGEOT** X LOPEZ T RIBEIRO

M-P GAIGEOT

A. CIMAS
ML SULPIZI
N FOLLIET
C GERVAIS
F TIELENS
J-F LAMBERT

GENCI HPC EUROPA