# 

# Gaining insights into different bioactivity mechanisms by DFT modeling of *soda-lime phospho-silicate* glasses

#### Enrico Berardo NIS COLLOQUIUM, TORINO, 28-29 NOVEMBER 2013

#### **BIOACTIVE GLASSES**



#### **BIOACTIVE GLASSES**



#### **BIOACTIVE GLASSES**



#### **Open questions**



- What is the role of Na<sup>+</sup> ions
- How P<sub>2</sub>O<sub>5</sub> affects bioactivity
- First steps of Hench's mechanism

#### **Open questions**



- What is the role of Na<sup>+</sup> ions
- How P<sub>2</sub>O<sub>5</sub> affects bioactivity
- First steps of Hench's mechanism

MOLECULAR MODELLING







#### What is the origin of the bioactivity?



# Multilevel **MM/QM** approach for bioglasses

- Amorphous
- Unknown structure

ATOMS with RANDOM positions in UNIT CELL, to reproduce the CORRECT glass COMPOSITION

Interatomic potentials



The General Utility Lattice Program, J.D. Gale and A.L. Rohl, *Mol. Simul.*, 29, 291 (2003) Molecular Dynamics are used to MELT the system, which is then COOLED down in order to simulate a MELT-QUENCH process



DENSITY FUNCTIONAL THEORY (DFT) – PBE XCpotential The generated structure is then **RELAXED** through a **Q**uantum **M**echanical approach



#### Bulk properties of the two models

| Bioglass | SiO <sub>2</sub> | P <sub>2</sub> O <sub>5</sub> | CaO  | Na <sub>2</sub> O |
|----------|------------------|-------------------------------|------|-------------------|
| 4585     | 48.1             | 3.7                           | 22.2 | 25.9              |
| 775      | 77.7             | 3.7                           | 18.5 | 0                 |

**45\$5** 

**77S** 



78 atoms

80 atoms

#### Bulk properties of the two models

| Bioglass | SiO <sub>2</sub> | P <sub>2</sub> O <sub>5</sub> | CaO  | Na <sub>2</sub> O |
|----------|------------------|-------------------------------|------|-------------------|
| 4585     | 48.1             | 3.7                           | 22.2 | 25.9              |
| 775      | 77.7             | 3.7                           | 18.5 | 0                 |

**45\$5** 





#### Vibrational properties of 45S5 <sup>®</sup>Bioglass





















#### Exposed lons and surface energy

| Eform  | $\underline{E_{slab} - [(n \times E_{H2O}) + E_{Bulk}]}$ |
|--------|----------------------------------------------------------|
| $H_2O$ | - $n$                                                    |



45\$5

| chemical species                                  | ab    | ас    | bc    | ab   | ac   | bc   |  |
|---------------------------------------------------|-------|-------|-------|------|------|------|--|
| [Na <sup>+</sup> ]                                | 17.3  | 24    | 9.4   |      |      |      |  |
| [Ca <sup>2+</sup> ]                               | 3.5   | 6.8   | 9.4   | 0    | 9.7  | 12.2 |  |
| [NBO]                                             | 34.6  | 54.8  | 31.5  | 3.1  | 12.9 | 12.2 |  |
| <i>E<sub>form</sub></i> (kJ/mol)/H <sub>2</sub> O | 172.0 | 458.4 | 124.5 | -7.8 | 5.2  | 25.9 |  |

Berardo, E.; Pedone, A.; Ugliengo, P.; Corno, M.; Langmuir, 2013, 29, 5749

#### Surface species



• Orthosilicate group (*ab* surface)



• 2M RING (*ac* surface)



#### What is the role of rings on the surface?

• Water in interaction with a **2M** ring (*ac* surface):



Berardo, E.; Pedone, A.; Ugliengo, P.; Corno, M.; Manuscript in preparation

### Water as a probe: 45S5 and 77S surfaces

One water molecule in interaction with 45S5 surfaces (energies in kJ/mol):
*ab* Surface *bc* Surface







110

H<sub>2w</sub>

74

90

• One water molecule in interaction with **77S** surfaces:



Berardo, E.; Pedone, A.; Ugliengo, P.; Corno, M.; Manuscript in preparation

#### Effect of a monolayer of waters



#### Average interaction

| Surface       | n° H <sub>2</sub> O | BE <sup>C</sup> |
|---------------|---------------------|-----------------|
| 45\$5 ab      | 17                  | 72.2            |
| 45S5 ac       | 16                  | 71.5            |
| 45S5 bc       | 15                  | 62.6            |
| <b>77S</b> ab | 16                  | 60.2            |
| 77S ac        | 17                  | 67.8            |
| <b>77S</b> bc | 16                  | 64.3            |

Berardo, E.; Pedone, A.; Ugliengo, P.; Corno, M.; *Manuscript in preparation* Cerruti, M.; Magnacca, G.; Bolis, V.; Morterra, C.; *J. Mater. Chem.*, 2003, **13**, 1279

#### Effect of a monolayer of waters



Average interaction



Berardo, E.; Pedone, A.; Ugliengo, P.; Corno, M.; *Manuscript in preparation* Cerruti, M.; Magnacca, G.; Bolis, V.; Morterra, C.; *J. Mater. Chem.*, 2003, **13**, 1279

#### Effect of a monolayer of waters

For two 45S5 surfaces we observed the **splitting of a water molecule** during relaxation

#### Average interaction



MONOLAYER

N<sub>ads</sub> (µmol/m<sup>2</sup>)

12

14

|   | Surface                 | n° H <sub>2</sub> O | BE <sup>C</sup> |       |
|---|-------------------------|---------------------|-----------------|-------|
| - | 45 <mark>\$</mark> 5 ab | 17                  | 72.2            |       |
|   | 45\$5 ac                | 16                  | 71.5            |       |
|   | 45\$5 bc                | 15                  | 62.6            | K N K |
|   | <b>77S</b> ab           | 16                  | 60.2            |       |
|   | 77S ac                  | 17                  | 67.8            | 20    |
| _ | 77S bc                  | 16                  | 64.3            | 0 2 4 |

Berardo, E.; Pedone, A.; Ugliengo, P.; Corno, M.; *Manuscript in preparation* Cerruti, M.; Magnacca, G.; Bolis, V.; Morterra, C.; *J. Mater. Chem.*, 2003, **13**, 1279



Berardo, E.; Pedone, A.; Uanciaso, F., corrio, M., Manascript III preparation



Berardo, E.; Pedone, A.; Ugliengo, P.; Corno, M.; Manuscript in preparation



Berardo, E.; Pedone, A.; Ugliengo, P.; Corno, M.; Manuscript in preparation



Berardo, E.; Pedone, A.; Ugiengo, P.; Corno, IVI.; Ivianuscript in preparation



Berardo, E.; Pedone, A.; Ugliengo, P.; Corno, M.; Manuscript in preparation



#### ACKNOWLEDGEMENTS



P. Ugliengo Università di Torino



M. Corno Università di Torino



A. Pedone Università di Modena e Reggio Emilia



A. Tilocca University College London



M. Delle Piane Università di Torino



