

Nanostructured Interfaces and Surfaces Centre of Excellence

Micro e nano-materiali per l'industria dei trasporti

Livio Battezzati

11 Luglio 2013, Unione Industriale, Torino

- esperienze acquisite
- attività in corso su temi specifici
- progetti da sviluppare

Sistemi e Tecnologie per l'EsPlorazione Spaziale, STEPS fase 1 (2010-2012) fase 2 (2013-2014) Materiali ablativi

Nanostructured Interfaces and Surfaces Centre of Excellence

SEM image of a carbon-based polymer composite foam

Contatti: D. Scarano, F. Cesano, A. Zecchina

SEM image showing a hierarchiacal porosity: large porosity (blue) and smaller interconnected pores (green, red).

air/propane flame test

Carbon-carbon conductive and piezoresistive composites

1D and/or 2D Carbon-based composites

...conductive **tracks** on polymers obtained by laser polypropylene (PP), exfoliated graphite (E irradiation on non-conductive MWCNT/Polyethylene multiwalled carbon nanotubes (MWCNTs) composites.

SEM lateral view of the v-shaped track after laser irradiation, highresolution SEM and AFM images taken along the profile of the track (on the top right) and far from the laser track (on the bottom right)

F. Cesano, et al., Carbon 2013, doi: 10.1016/j.carbon.2013.04.066 S. Cravanzola, et al , Carbon 2013, doi: 10.1016/j.carbon.2013.05.064

...conductive **wires**, 1.5 mm and 3 mm in diameters, obtained by melt blending raw materials: polypropylene (PP), exfoliated graphite (EG) and/or multiwalled carbon nanotubes (MWCNTs)

SEM and nc-AFM images of the conductive wire, showing the interconnections among graphite nanoplatetels (2D) and nanotubes (1D); on the bottom, height profiles along the selected lines

Porous carbon-oxide composites (ZnO/C, SnO₂/C, TiO₂/C)

Nanostructured Interfaces and Surfaces Centre of Excellence

(a) X- Ray Tomography and (b) SEM images of a porous core-shell C/TiO₂ composite microsphere; (c) lateral-view SEM image of an array of TiO₂ pillars protruding from a C-monolith.
F. Cesano, et al., Adv. Mater. 2008, 20, 3342–3348

ZnO/C

SEM and AFM images of ZnO– carbon composites

SEM and AFM images of imprinted carbon phase

F. Cesano, Journal of Photochemistry and Photobiology A: Chemistry 196 (2008) 143–153

M. Rahman et al., Catalysis Today 150 (2010) 84–90.

Contatti: A. Damin, G. Spoto; F. Bonino, S. Bordiga; D. Scarano, F. Cesano, A. Zecchina,

SnO₂/C

SEM images of SnO₂/Sn/Carbonbased porous composites: foams (a) and films (b), with the related XRD patterns (d, e).

Structure and optical/conductive properties make them suitable for capacitors (foams) and gas sensors (films)

Hybrid materials as anodes

Increase of electric conductivity of materials for power anodes based on TiO₂

State of the art
i)TiO2 + Grafene [1] hybrid materials

Self-Assembled TiO₂–Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion

Donghai Wang,[†] Daiwon Choi,[†] Juan Li,[†] Zhenguo Yang,[†] Zimin Nie,[†] Rong Kou,[†] Dehong Hu,[†] Chongmin Wang,⁺ Laxmikant V. Saraf,[†] Jiguang Zhang,[†] Ilhan A. Aksay,^{‡,}* and Jun Liu^{†,}*

"The specific capacity was more than doubled at <u>high charge rates</u>, as compared with the pure TiO_2 phase"

<u>Progress in the field can be achieved by:</u>

1.Increase in conductivity of anodes by coupling TiO₂ with carbon based phases;

2.Hybrid TiO₂/carbon based materials (CBM) made via "green" synthesis;

3.Synthesis will NOT use expensive graphene made separately;

4.Applicatione to di TiO_2/CBM anodes in Li-batteries: catodes made of innovative materials such as nanostructured LiFePO₄.

Contatti: C. Minero

Flattening of HRR \rightarrow efficient flame retardation.

Contatti: M. Zanetti

Inflatable structures

Centre of Excellence

Polymer for low permeability/high strength filled with phillosilicates or graphene

"Tortuous path" of a gas atom or molecule in a exfoliated nanocomposite

Contatti: G. Ricchiardi

Thermoelectric materials:

Nanostructured Interfaces and Surfaces Centre of Excellence

Systems and components for energy harvesting and energetic efficiency

Progetto Automotive DRAPO'

- Stoichiometric monophasic system
- High grain boundaries density
- Single/double/multi-doping
- Supersaturation by non equilibrium techniques (ball milling, melt-spinning)

Environment friendly TE materials: Mg₂Si

Efficiency increase

of CoSb₃, Zn₄Sb₃

 $ZT = \frac{\alpha^2 \sigma}{\sigma} T$

Stability of TE modules in service: thermal diffusion at interfaces

Contatti: A. Castellero

Nanostructured magnets

Improving magnetic properties of rapidly solidified ribbons and wire controlled amorphous to nano-crystalline transformation.

Contatti: M. Baricco, L. Battezzati

Materials for additive manufacturing

Nanostructured Interfaces and Surfaces Centre of Excellence

Superalloys and Ti-alloys are candidates for AM. Optimization of microstructure via phase fraction modelling.

Figure 1: Schematic Diagram of the EBFFF Process

Contatti: L. Battezzati

Welding of HS automotive steels

0.6

Laser weld of automotive steel: molten zone and HAZ. Modelling solidification microstructure using metastable phase diagrams

Wear in brake pads and discs

An example of service to industry: formulation and analysis of friction materials.

Wear debris acquire microstructure typical in processes of severe plastic deformation (ECAP, HPT, white layer formation...)

Conclusions

- New projects on materials for application in transports
- Up to date research and training
- Relationship with other fields
- Critical mass needed for industrialization and competing with advanced countries
- Critical mass needed for large facilities

Nanostructured Interfaces and Surfaces Centre of Excellence

Ringraziamenti

IATF1

Progetto SISA

PRIN vari

Compagnia di San Paolo

EU-7FP – AccMet EU-7FP - VitriMetTech

ESA-THERMOLAB

Progetto Automotive DRAPO' (Regione Piemonte)

Asse 1 "Innovazione e transizione produttiva"

Misura I.1.1 "Piattaforme innovative"

F.E.S.R. 2007/2013